


Stokes $ow in a conducting fluid 305 

is produced which, according to Ohm’s law, sets up electrical currents in 
the fluid if the latter is a conductor. The interaction of these currents 
with the magnetic field then produces a body force which must be included 
in the. Navier-Stokes equations for the motion of the fluid. The effect 
of this body force is to inhibit the motion of the fluid across the lines of 
force. Since, as will be shown, the lines of force are approximately in the 
.direction of the undisturbed stream, the natural tendency of the fluid to 
flow round the sphere is opposed and the result is an increase in drag. The 
possibility of separation behind the sphere will also be enhanced, and then 
the present theory will no longer apply. However, there is presumably 
a certain range in which there is no separation, as in the Stokes problem. 
In  this range, the theory will be valid. 

The problem also seems amenable to experiment, and investigations 
are to be conducted at the Guggenheim Aeronautical Laboratory, California 
Institute of Technology, on the motion of small spheres in a column of 
mercury, the magnetic field being produced by a surrounding coil carrying 
a current. 

GOVERNING EQUATIONS 

The flow is assumed to be steady and parallel to the negative x-axis at 
infinity. The equations to be solved are then, using m.k.s. units (Cowling 
1957), and with the usual notation for electromagnetic quantities, 

curl H = j, div H = 0, (1) 
curlE = 0, (2) 

(3 1 
divV = 0, (4) 

(5  ) 

j = u(E+pV’ xH), 

p ( V  . V)V’ = - Vp‘ + pvV2V’ + p j  x H ,  

where V‘ is the velocity of fluid and p’ is the pressure. 
From the first three equations we deduce that 

pu curl V x H = curl curl H. (6) 
Let U be the speed of the uniform stream at infinity parallel to the 

negative x-axis, and let u be the radius of the sphere. The space coordinates 
may then be made non-dimensional with the factor u-l and the pressure 
and velocity as follows, 

a V’+ Ui v = - p = -p‘, P V U  U ’  

where i is a unit vector along the x-axis. Note that the boundary conditions 
on V are now V = 0 at infinity and V = i at the sphere. 

Equations (4), (5) and (6) then become 

divV = 0, (7) 

(8) 

(9) 

R(V . 0 ) V  = - Vp + V2V + (pu2/pvU)j  x H, 

R, curl V x H = curl curl H, 

F.M. U 



306 W. Chester 

where Ua 
R = 7 = Reynolds number, 

R, = Uapo = magnetic Reynolds number, 

and all the operators now refer to non-dimensional coordinates. 
As in the classical Stokes problem we assume that R is small. In  addition 

we assume that R, is small. In  most practical problems the first condition 
implies the second. For example, for mercury, v = and po = lF5, 
so that RJR = lo-'. 

If the term containing R, in (9) is neglected we get 

curl curl H = 0, 

and so the magnetic field is independent of the fluid velocity to this approxi- 
mation. In practice the permeabilities of the fluid and the sphere will be 
effectively equal provided both are non-magnetic, so that we may take the 
magnetic field to be uniform and parallel to the x-axis at all points. This 
makes V x H = 0 both at the sphere and at infinity. Hence equation (Z), 
and the boundary conditions on E and j, are satisfied by 

E = 0, j = UpaVxH. (10) 
The problem is now reduced to the solution of equations (7) and (8) 

for V and p ,  with j given by (10) and with a prescribed value for H = Hi. 
It should be noted that some of the complications which arise from 

boundary conditions in magneto-hydrodynamics are conveniently absent 
in this problem. Moreover the displacement currents are identically zero, 
since the motion is steady. Nor is there an electric field required to prevent 
a pile-up of charge on the sphere, for the current filaments, like the vortex 
filaments, form closed circuits coaxial with the sphere and vanish on its 
surface. 

SOLUTION OF THE EQUATIONS 

In  equation (8) we omit the left-hand side, since it contains the factor R. 
The equations are then 

v .v  = 0, (11) 

(12) - V p  + V2V- M2(V- (V. i)i} = 0, 

where M denotes the Hartmann number pHa(a/pv)1'2 and is essentially 
non-negative. 

We assume the following terms for V and p :  
V = eMXV$, + e-nfxV$2, (13)  

where and $2 are to be determined. It will appear (see equations (19) 
and (18) below) that both +1 and $2 are O(A4-l) as 11.1 +- 0, so that the 
limiting value for the pressure (the classical Stokes solution) is non-zero. 
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Moreover, the singular terms in equation (13) cancel each other, SO that 
a finite limiting value for the velocity is also obtained. 

Equations (1 1) and (12) now become 

V . V  = e M z  v*+,+ M - +e-Mz v2+ - M  842 -) = 0, ( a+,> ax ( 2 ax 

- V p + V 2 V V W ( V - ( V . i ) i }  = eMrV V2+1+M- + ( a+1> ax 

and so both equations are satisfied provided that 

0 2 4 ~  + Ma+,lax = 0, 

- Ma+,lax = 0. 

Solutions of equations (15) and (16) may be written in the form 

m 

+2 = (r/Mr)1/2e*Mx C B, ~ , + , ( : ~ r ) ~ , ( c o s  el, (18). 
n=O 

where (Y, 0 )  are non-dimensional spherical polar coordinates, K ,  is the 
modified Bessel function and P, is the Legendre polynomial. 

Considerations of symmetry also imply that B,  = (- l)n+lA, ; for 
example the x-component of the velocity must be an even function of x. 

It remains to obtain the coefficients A, by imposing the boundary 
conditions that the x-component of V as given by (13) shall be unity and the 
component perpendicular to the axis zero at the sphere. For values of M 
which are not too large this can be done numerically, approximating to 
the resulting series by a finite number of terms. The expansion of 
e' 'OS 'PrL(cos 0 )  in terms of spherical harmonics is required, and will 
be found in Goldstein (1929). However, values of M which are 0(1) 
and smaller are reasonable in laboratory experiments. For example, the 
Hartmann number for a sphere of radius 0.1 cm in mercury subject to a 
field of 100 gauss is about 0.1. Thus a solution in powers of M is not without 
interest. For this purpose, solutions of (15) and (16) of a different form 
were used in order to avoid the algebraical manipulation of Bessel functions, 
Legendre polynomials and their derivatives. 

Fundamental solutions of equations (15) and (16) are, respectively 

y-le-ijM(r+~), y-le-tM(r-r) 

and further linearly independent solutions can be formed, having the 
required symmetry about the x-axis and the correct behaviour at infinity, 

u 2  
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by successive differentiation with respect to x. Thus we may write 

For  small values of M the exponential terms may be expanded in series. 
The  differentiations are easily performed and the first few coefficients 
calculated so as to be consistent with the boundary conditions. The details 
.are straightforward and are omitted. When the coefficients are obtained, 
the drag may be computed from the stress across the surface of the sphere 
using the formula (Lamb 1932) 

'The final result for the drag is 

rp,., = -px + {.(a/&) - 1 )(v. i) f a(r . v p .  

- M 2 -  7 - 43 ~3 + o(~4)). 
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